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Abstract-The simplest boundary problem of unstationary heat-conduction equation, with the source 
depending on temperature as exp (-E*/T) is investigated in this paper. 

The uniform convergence of successive approximations is proved for the corresponding integral 
equation; the solutions have been calculated in the first approximation at various limit cases. It has 
been also shown here that in the absence of “explosion” the temperature at each point will not exceed at 

any moment of time the corresponding stationary temperature. 

R&urn&-Ce travail traite du problbme aux limites le plus simple de Equation de la chaleur en 
rtgime non permanent en prksence d’une source d&pendant de la temperature comme exp ( --E*/T). 

La convergence uniforme des approximations successives est dkmonstrke pour l’equation intkgrale 
correspondante; les solutions ont tt6 caluculkes pour la premikre approximation dans divers cas 
limites. On a montrk aussi qu’en l’absence d”‘explosion” la tempkrature en chaque point ne d&passe B 

aucun moment la temperature correspondant au regime stationnaire. 

Zusammenfassung-Die Arbeit behandelt ein Problem der nichtstationlren WIrmeleitung mit ein- 
father Randbedingung, bei welchem die Wlrmequelle von der Temperatur nach der Funktion 
exp ( -E*/T) abhlngt. 

Die gleichmissige Konvergenz fiir die aufeinanderfolgenden Approximationen wird ftir die ent- 
sprechende Integralgleichung nachgepriift. LGsungen werden als erste Ntiherungen fiir verschiedene 
Grenzfglle angegeben. Es zeigt sich such, dass, abgesehen von “Explosionen”, die Temperatur an 

jedem Punkt zu keinem Zeitpunkt die entsprechende station&e Temperatur Iberschreitet. 

AHHOTaIum--B pa6oTe m33renyeTcR lIpocTei%ruas HpaesaR aagava HeCTa~HOHapHOrO ypanse- 
HHJI TenJIOnpOBOflHOCTH C EiCTOYHHIFOM 3aBHCFIIQIIM OT TeMnepaTypbI HaK eXp (-E*/T). 

~OKaSbIBaeTCR PaBHOMepHaR CXOAHMOCTb IIOCJIe~OBaTWIbHbIX npHl%II~?KeHI4ti A.7R 
COOTBeTCTByIOmWO llHTWpaJIbHOl?O ypaBHeHI?FI; BbIWICJIeHbI B IIepBOM npH6nm?rreHkm pemeHHR 

r3 pa3nHYHbIx npeze.nbHbIx cnysaHx. noHa3aHo TaKlfCe, YTO npn ~TC~TCTBLIII ((B3pbIaa)) TeMne- 
PaTypa B N.iitfJIOfi TOYHe He 6yAeT IIpeBbImaTb B n1o60ti MOMeHT BpeMeHIi COOTBeTCTByIOIqyIO 

CTauHOHapHyIO TeMnepaTypy. 

IN A number of thermal conductivity problems, 
e.g. in the case of heat-transfer problem in the 

Let us consider the boundary problem for the 
equation 

capillary-porous media in the presence of chemi- 
cal conversionst [l], or in the case of heat aT Kl E* 

explosion problem [2, 31, we may meet the heat 
-= aVaT+ Gexp -T 
at B ( 1 

(1) 

conduction equation with the heat source 
depending on the temperature as in the range limited by two parallel infinite 

E* 

( 1 

planes x = f Z 

exp -T aT(O, t) 
T(l, t) = T,; -ax = 0; T(x, 0) = T,, (2) 

where E* = E/R is the activation energy 
expressed in degrees and T is the absolute 
temperature. 

Now we introduce dimensionless variables and 
can take advantage of the similarity criteria 

t As was recommended by Academician Luikov. known in the heat-transfer theory [l]: 
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where Fo is the ordinary Fourier criterion of 
homocronism and PO is the modified Pomerant- 
sev criterion. 

If we designate the Green function of the heat 
conduction equation for the range O<[<l,r>O 
through Y([, e ; T - T’} then for 8(5, T) the 
integral equation takes place : 

%5 d = tl, (‘$4 + E + ss l Y(& f’; 7 - 7’) x 

exp i-‘ &)] dT’dE’ (4) 

where 

$!I(& 7) = e, - a (8, - 8,) 2 k-3 x 

n=O 

eXp [-d(?2 -t G)"T] COS (22 + i)rt (5) 

and the Green function 

The &function on the right side of the equation 
(6) is determined by the equality [43: 

$(u, iv) = 2 5 exp [ -n(n + #v)] cos (2n + 1) a~ 
n=O 

Note that the Green function is symmetric with 
reference to the variables 5 and 6’ and has 
nowhere negative values in the range under 
consideration. 

It is possible to solve equation (4) by the 
method of successive approximation of the form 

o@+‘)@, 7) = $(t, 7) + 
T 1 

+c Sf Y&f’; T- 7’) x 
a 0 

e(O)& T) = J&f, 7); (12 = 0, I, . . .) (7) 

If the parameter E is small enough then it is 
possible to show that the succession of functions 
converges uniformly to the solution of the 
equation (4). 

For the proof it is necessary to compose the 
difference 

@(n-+1) ([, T) - i9@) (E, T) = 7 I =CZ JJ Y(5, E’ ; T - 7’) 
0 0 

! exp [-1/6(“)(6’, 7’)] - eXp [-l,@ts-l+?, T')]) __~._ 
6(@((‘, T’) -6 @-‘)(.f’, 7') 

>X 
J 

[e(@((‘, 7’) -@@-‘)(f, T’)]dT’d[’ (8) 

It should be noted that, 

@@+I) - 6(“) > 0, since e(‘)(f, 7) = #(t, T) > 0 

and 

Y([, 6’ ; T - 7’) > 0 

If we designate the maximum of the difference 
Ocn+l) - 0@) through Mntl 5d b 0 then from the 
equation (8) it follows that 

where 

It is easy to make sure that A < 1, if 6 < e2/2. 
In this case there exists a limit function of 
sequence (7) which is the solution of the equation 
(4). 

Let us assume the above-mentioned method to 
get the approximate solutions in some ordinary 
limit cases. To begin with we shall take the 
solutions at large values of T. As a zero approxi- 
mation it is convenient to admit the stationary 
temperature distribution which is described by 
the equation 

d24t(0 --=-.... 
dt2 

E exp (9) 

with boundary condition as 

W) 



HEAT TRANSFER IN THE PRESENCE OF CHEMICAL CONVERSIONS 271 

The solution of this equation is of the type: 

J e8t(t) du 

2/[Q exp (-l/e,) - u exp (-l/u) + - 
Be + Ei (- l/e,) - Ei(- l/u)] 

= 2/W (1 - 6) (11) 

where the parameter em is the maximum value 
of e,,(6), which can be achieved because of 
symmetry at 5 = 0, and 

Ei(x) = - O” 7 dt 
s -3: 

is the integral exponential function. 

Now we shall consider another extreme case, 
when 7 is small. Here we can take the initial 
temperature eO as a zero approximation. It is 
possible to simplify the kernel of the integral 
equation using the known relation for 6-func- 
tions [4]: 

The solution (11) agrees with the boundary 
conditions not at any values of E [2, 31 if l is 
greater than some cc?, then the establishment of 
a stationary state is impossible. It means 
physically that heat supply exceeds heat output 
and the heat explosion will take place. The 
critical temperature 0$, corresponding to the 
parameter <CT is being determined from the 
equation: 

and retaining only the principal terms in the 
kernel at T + 0. All the integrations are being 
easily carried out and we have: 

eg, T) = ee + E exp (- i/e,) 
i 

1 - t2 + 

- 
11 Pm exp (-l/e,) -“e, exp (44) ++ 

Ei(-l/O,) - Ei(-l/O,)] 

8, exp (-l/e,) - u exp (-l/u) + 

+ 
s 

8, + 2Ei(-l/B,) -2Ei(-l/u) 

0, d” [e, exp (-I/e,) - u exp (-l/u) + 
+ Ei( - l/e,) - Ei(- l/u)J312 

= 0 

+ Jii)[(l - 5) exp (- (7) + 

+(l+*)exp(-(y)-2exp 

1”‘) (-1)]~+(~,--~,+ cexpj-k) 

[ 

(1 - .)2 
-r+T]jerf(i$)+ 

+ 
1 

e. - 8, + ~exp - 81 
C 1 

[ 

(1 
?-+ T]jerf($jJ) - 

+ 6)” 

(14) 

OWL has been determined above. 

[2] gives a physically interesting case of the 
latter solution when 8, differs slightly from Be. 

So, at l < cCr and ; $ 4/n2 the approxima- 
tion to the stationary state is being described by 
the relation 

(13) 

where e,,(t) is given by the formula (11). 
Normally such a case as B < l(T < E*) takes 

place in chemical kinetics. This allows one to 
simplify the initial integral equation by the 
method of “steepest descent”; for large 
T(> 4/m2) we have: 

- 
i 

eO - e, + c exp - k 
C 1 

O [2 + $erf ($)) 

. (15) 

J 
Finally, let us consider such a case, when the 

parameter E is small. One may get the solution 
in the form of 6 power series, taking I,&, T) as a 
zero approximation (see (5)). At E+ 0 the 
difference 8, - BC --f 0. If the time is large 
enough then it is possible to neglect the second 
term of (5) in comparison with the first one. 
The same can be done at any point of time, if 
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IBC - ti,,l < 8,. In the first approximation we 
can easily get: 

cos (n + l/2)4 (16) 

We tried on all occasions to write down only 
the first approximations because of the bulky 
results. It is difficult to get the higher approxima- 
tions as it involves difficulty in calculation. 

And now we would like to show, that the 
temperature at any given point for the process as 
a result of which the stationary distribution will 
be established (E < s,,), will not exceed the 
stationary temperature in the same point. For 
this the difference will be 

46 T) = 45, 7) - OS, (0 

The latter satisfies the integral equation 

d7’ d[’ (17) 

T. 1;. PERELMAN 

where 

d(5, 7) = 2,,5 [ PO ~ ~.&‘~I x 

cos (a + l/2)4’ d!$‘) exp [-nZ(n + l/2)%] 

x cos (n + 1/2)7r5 

Applying the method of successive approxima- 
tions to equation (17) we assume that 

If we take into account that +(E, 7) L 0 (at 
H > 0,) and give the reasons analogous to those 
mentioned above in the proof of the existence of 
the solution, then it will be possible to find that 
d (a} is not zero at any finite T and the difference 
d cfl) - d tn-l) + 0 at n + E. 
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